Crossing of identical solitary waves in a chain of elastic beads.

نویسندگان

  • M Manciu
  • S Sen
  • A J Hurd
چکیده

We consider a chain of elastic beads subjected to vanishingly weak loading conditions, i.e., the beads are barely in contact. The grains repel upon contact via the Hertz-type potential, Vinfinitydelta(n), n>2, where delta> or =0, delta being the grain-grain overlap. Our dynamical simulations build on several earlier studies by Nesterenko, Coste, and Sen and co-workers that have shown that an impulse propagates as a solitary wave of fixed spatial extent (dependent only upon n) through a chain of Hertzian beads and demonstrate, to our knowledge for the first time, that colliding solitary waves in the chain spawn a well-defined hierarchy of multiple secondary solitary waves, which is approximately 0.5% of the energy of the original solitary waves. Our findings have interesting parallels with earlier observations by Rosenau and colleagues [P. Rosenau and J. M. Hyman, Phys. Rev. Lett. 70, 564 (1993); P. Rosenau, ibid. 73, 1737 (1994); Phys. Lett. A 211, 265 (1996)] regarding colliding compactons. To the best of our knowledge, there is no formal theory that describes the dynamics associated with the formation of secondary solitary waves. Calculations suggest that the formation of secondary solitary waves may be a fundamental property of certain discrete systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Highly - Nonlinear Acoustic Waves and their coupling with Linear Elastic Media

This project aims at introducing and testing a new method of Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) for materials and engineering systems, based on the use of Highly Nonlinear Acoustic Waves (HNAWs). At a fundamental level the project aims at understanding the interface behavior between linear and highly nonlinear media. The effects of interface dynamics on the ...

متن کامل

Strongly nonlinear waves in a chain of Teflon beads.

One-dimensional "sonic vacuum" type phononic crystals were assembled from a chain of polytetrafluoroethylene (PTFE,Teflon) spheres with different diameters in a Teflon holder. It was demonstrated that this polymer-based sonic vacuum, with exceptionally low elastic modulus of particles, supports propagation of strongly nonlinear solitary waves with a very low speed. These solitary waves can be d...

متن کامل

Periodic Travelling Waves and Compactons in Granular Chains

We study the propagation of an unusual type of periodic travelling waves in chains of identical beads interacting via Hertz’s contact forces. Each bead periodically undergoes a compression phase followed by a free flight, due to special properties of Hertzian interactions (fully nonlinear under compression and vanishing in the absence of contact). We prove the existence of such waves close to b...

متن کامل

Strongly nonlinear wave dynamics in a chain of polymer coated beads.

Strongly nonlinear phononic crystals were assembled from a chain of Parylene-C coated steel spheres in a polytetrafluoroethylene holder. This system exhibits strongly nonlinear properties and extends the range of materials supporting sonic-vacuum-type behavior. The combination of a high density core and a soft (low elastic modulus) coating ensures a relatively low velocity of wave propagation. ...

متن کامل

Solitary wave dynamics in generalized Hertz chains: an improved solution of the equation of motion.

The equation of motion for a bead in a chain of uncompressed elastic beads in contact that interact via the potential V(delta) approximately delta( n), n>2, delta being overlap, supports solitary waves and does not accommodate sound propagation [V. Nesterenko, J. Appl. Mech. Tech. Phys. 5, 733 (1983)]. We present an iteratively exact solution to describe the solitary wave as a function of mater...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 63 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001